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L2 STATION KEEPING MANEUVER STRATEGY FOR THE JAMES 
WEBB SPACE TELESCOPE 

Jeremy Petersen* 

The station-keeping plan for the James Webb Space Telescope is zero velocity in 

the x-component at the fourth successive crossing of the XZ plane of the rotation 

libration point frame. A differential corrector is employed to determine the nec-

essary delta-v. Maneuvering along the position component of the stable eigenvec-

tor of the monodromy matrix produces a minimum delta-v solution. The tech-

niques developed to determine the minimum maneuver direction in a full ephem-

eris model, along with strategies to cope with the attitude constraints imposed by 

the sunshield that prevents the ability to maneuver along the stable eigenvector, 

are examined in this study. 

INTRODUCTION  

The James Webb Space Telescope (JWST) is a flagship mission scheduled to launch in 2021. 

It will be the scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. 

The project is an international collaboration between the National Aeronautics and Space Admin-

istration (NASA), the European Space Agency (ESA), Canadian Space Agency, and NASA God-

dard Space Flight Center (GSFC). The JWST mission will focus on the infrared spectrum to detect 

the redshifted light from very early in the universe, which will fill a gap in the current range of 

astrophysical observations and allow the exploration of a whole new set of fundamental scientific 

questions ranging from the formation of the universe to the origin of planetary systems. 

Given the sensitivity of the instruments to stray light, the mission will orbit near the Sun–Earth–

Moon barycenter (SEMB) L2 libration point, allowing the optical element to remain pointed away 

from the Sun, the Earth, and the Moon at all times. The near constant geometry of the trajectory 

relative to the Earth as it orbits about the Sun allows the observatory to map large swaths of the 

celestial sphere while providing long-duration communication links to the Earth. The orbital dy-

namics in the L2 region also support the observatory mass-budget constraints with minimal transfer 

and orbit maintenance costs. Thermal constraints on the instruments impose the need for a 161 

square-meter sunshield as show in Figure 1, the presence of which significantly couples the orbital 

and attitude dynamics as the Sun’s rays impinge on this surface. In addition to the need for the 

sunshield, thermal requirements also prevent the placement of thrusters on the instrument side of 

the observatory; consequently, no direct observatory-to-Sun vector maneuver directions are al-

lowed. 
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Figure 1. Visual overview of JWST.* 

The dynamical region about the SEMB L2 point is inherently unstable. As such, routine station-

keeping maneuvers are necessary to keep the observatory in a science orbit for the desired 10.5-

year mission lifetime. It is well known that maneuvering along the position components of the 

stable eigenvector of the monodromy matrix provides the minimum station-keeping delta-v for 

libration point orbits (LPO).1-3 The present investigation builds on a maneuver strategy imple-

mented for the WIND mission in 2014, which employed maneuvers along the projection of the 

position components of the stable eigenvector in the ecliptic plane to reduce WIND’s station-keep-

ing costs between 5 and 25 percent relative to the historical method of maneuvering along the 

spacecraft-to-Sun line.4 The WIND technique will be modified for use by JWST to introduce an 

out-of-plane component, which will allow for full alignment between the position components of 

the stable eigenvector and the station-keeping thrust vector. In the event that the attitude restrictions 

of the observatory prevent alignment between the stable eigenvector and the station-keeping thrust 

vector, selecting the observatory attitude that places the station-keeping thrust vector as close as 

possible to the position components of the stable eigenvector will result in the minimum delta-v 

solution that falls within mission attitude requirements. 

STATION-KEEPING DESCRIPTION 

There are two types of thrusters on JWST: secondary combustion augments thrusters (SCATs) 

and monopropellant rocket engine thrusters (MREs). The SCATs are the main thrusters for maneu-

vering. The SCATs are bi-propellant thrusters and draw from two separate tanks for a hypergolic 
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reaction. Two pairs of SCATs exist: one for the early orbit mid-course correction maneuvers and 

one for station-keeping maneuvers. Two pairs are necessary because the center of mass of the ob-

servatory changes because of the sunshield deployment between the end of the early orbit mid-

course corrections and the beginning of station-keeping maneuvers. Each pair comprises a primary 

and a redundant thruster. SCAT 1 and 2 are the primary and redundant pair for the early orbit mid-

course corrections while SCAT 3 and 4 are the primary and redundant pair for science orbit station-

keeping maneuvers. The second set of thrusters is composed of eight dual thruster modules (a.k.a., 

DTMs), each containing a primary and redundant monopropellant rocket engine (MRE). The MREs 

provide attitude control during maneuvers and are used for momentum unloading. For a given ma-

neuver, only one SCAT is used throughout the maneuver while the MREs fire intermittently for 

attitude control.5  

Station-keeping maneuvers will be performed on a 21-day cadence with the possibility of up to 

eight momentum unloads throughout each 21-day period. The flight dynamics team is responsible 

for providing the maneuver plan for station-keeping maneuvers. A maneuver plan consists of a 

maneuver duration, in seconds, the MJ2000 reference frame orientation of the three observatory 

body axes at the beginning of the maneuver, and the delta-v vector in MJ2000 reference frame.  

The maneuver size and duration are calculated via a differential correction process in the full 

ephemeris model to determine the maneuver size at a specified direction that achieves zero x-ve-

locity at the fourth crossing of the XZ plane in the rotating libration point (RLP) frame. The x-axis 

of the RLP frame points from the Sun through the Earth–Moon barycenter, the z-axis points to the 

north ecliptic pole, and the y-axis completes the right-handed system. The investigation in this 

paper outlines the method to determine the maneuver direction that minimizes the maneuver size 

within mission constraints. 

LOW-ENERGY MANEUVER SOLUTIONS USING DYNAMICAL SYSTEMS THEROY 

Previous studies examined the low-energy based station-keeping solutions for libration point 

orbits using dynamical systems theory.1-4 These studies show that the magnitude of the station-

keeping delta-v is minimized by applying the station-keeping delta-v along the position component 

of the stable eigenvector of the monodromy matrix, as expressed in the RLP frame. The mon-

odromy matrix is generated by propagating state transition matrix for one full revolution around 

the libration point. 

The first step towards the implementation of maneuvering along the stable eigenvector begins 

with a semi-analytical study employing the well-established circular, restricted, three-body (CR3B) 

model. The CR3B model, appearing in Figure 2, is a rotating frame composed of three bodies: two 

primaries, m1 and m2, and an infinitesimally small third body, m3. For this application, m1 is the 

Sun, m2 is the Earth–Moon system, and m3 is JWST. The two primaries orbit about their shared 

barycenter at a constant angular rate. The x-axis of the frame is defined as the line passing through 

the two primaries, the z-axis is perpendicular to the plane of rotation, and the y-axis completes the 

right-handed triad. It is useful to nondimensionalize the equations of motion based on a set of char-

acteristic quantities. The characteristic values for length, mass, and time, are defined as 

 where D1 and D2 are the distances between the primaries and their barycenter, m1 and m2 are the 

masses of the primaries, and 𝐺̃ is the dimensional gravitation constant. 

𝑙∗ = 𝐷1 + 𝐷2     𝑚
∗ = 𝑚1 + 𝑚2     𝑡

∗ = √
𝑙∗3

𝐺̃𝑚∗
 (1) 
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Figure 2. Circular, restricted, three-body model definition. 

Using the characteristic quantities defined above, the nondimensional time parameter, τ, and 

mass parameter, µ, are defined as 

𝜏 =
𝑡

𝑡∗
     𝜇 =

𝑚2

𝑚∗
 (2) 

and the nondimensional vectors describing the position of the spacecraft relative to the two prima-

ries, 𝑟 and 𝑑̅, and relative to the barycenter of the system, 𝜌̅, are defined as 

𝑟̅ =
𝑅̅

𝑙∗
     𝑑̅ =

𝐷̅

𝑙∗
     𝜌̅ =

𝑝̅

𝑙∗
= 𝑥𝑥 + 𝑦𝑦̂ + 𝑧𝑧̂ (3) 

The unit vectors 𝑥̂, 𝑦̂, and 𝑧̂ are the axes of the rotating frame. 

With the nondimensional quantities established, the equations of motion for the third body in 

the system is 

𝑥̈ − 2𝑦̇ =
𝜕𝑈∗

𝜕𝑥
     𝑦̈ + 2𝑥̇ =

𝜕𝑈∗

𝜕𝑦
     𝑧̈ =

𝜕𝑈∗

𝜕𝑧
 (4) 

where the dots represent differential with respect to nondimensional time. U* is the pseudo-poten-

tial function, 

𝑈∗ =
1 − 𝜇

𝑑
+

𝜇

𝑟
+

1

2
(𝑥2 + 𝑦2) (5) 

where d and r are scalar distances, 

𝑑 = √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2     𝑟 = √(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2 (6) 

The low-energy maneuver direction is along the position components of the stable eigenvector 

of the monodromy matrix. To calculate this matrix, the state transition matrix, φ, associated with 

the CR3B equations of motions must be numerically integrated for one period about the libration 

point. The first order differential equation governing the state transition matrix is 
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𝜑̇(𝑡, 𝑡𝑜) = 𝐴(𝑡)𝜑(𝑡, 𝑡𝑜) (7) 

where A(t) is the Jacobian matrix that is composed of the partial derivatives of the equations of 

motion, 𝑓̅, with respect to each of the six states, 𝑥̅, 

𝐴(𝑡) =
𝜕𝑓̅

𝜕𝑥̅
=

[
 
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

𝑈𝑥𝑥
∗ 𝑈𝑥𝑦

∗ 𝑈𝑥𝑧
∗ 0 2 0

𝑈𝑦𝑥
∗ 𝑈𝑦𝑦

∗ 𝑈𝑦𝑧
∗ −2 0 0

𝑈𝑧𝑥
∗ 𝑈𝑧𝑦

∗ 𝑈𝑧𝑧
∗ 0 0 0]

 
 
 
 
 
 

 

𝑈𝑖𝑗
∗ =

𝜕𝑈∗

𝜕𝑖𝜕𝑗
 

(8) 

For the case study presented in this investigation, a launch epoch of January 14, 2021, at 12:10 

UTC is selected. The resulting orbit for this launch epoch is a tight quasi-halo with a maximum 

RLP-Y and RLP-Z amplitude of approximately 771,000 km and 418,000 km, respectively. The 

distance between the Sun and the Earth-Moon barycenter in the CR3B model was set to a mean 

distance of 149.5e6 km. Figure 3 provides a comparison between the representative CR3B halo 

orbit and the full ephemeris quasi-halo orbit at the instance of the selected launch epoch. The green 

orbit represents the CR3B halo orbit while the black orbit represents the full ephemeris model 

quasi-halo orbit propagated for 10.5 years past launch. 

 

Figure 3. Visualization of the reference halo orbit used for this investigation. The maximum RLP-

Y and RLP-Z amplitude is approximately 771,000 km and 418,000 km, respectively. 
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With a representative orbit selected in the CR3B model, the monodromy matrix can be con-

structed at various locations throughout the representative orbit and the direction of the stable ei-

genvector can be calculated through an eigenvalue decomposition of each monodromy matrix. For 

this representative halo orbit, only two of the six eigenvalues contain only a real component; one 

eigenvalue corresponds to a stable mode and the other to the unstable mode. As such, the eigen-

vector associated with the singular stable eigenvalue is the eigenvector that determines the direction 

of the low-energy delta-v solution. Figures 4 and 5 show two representations of the position com-

ponents of stable eigenvector calculated in the CR3B regime. Figure 4 shows the position compo-

nents of the stable eigenvector at various locations throughout the representative orbit. Figure 5 

constructs the stable eigenvector direction into a series of two angles as a function of the orbit angle 

in the RLP-XY plane: the angle of the stable eigenvector in the RLP-XY plane and the angle of the 

stable eigenvector out of the RLP-XY plane. 

 

Figure 4. The direction of the stable eigenvector, in blue, in the RLP frame throughout various 

orbit locations in the reference halo orbit in the CR3B problem. The Sun is located along the –x axis. 

 

 

Figure 5. Representation of the stable eigenvector in terms of an RLP-XY in-plane angle and 

RLP-XY out-of-plane angle. Both angles are a function of location in the RLP-XY plane. 
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As seen in the left plot in Figure 5, the direction of the position components of the stable eigen-

vector in the CR3B model is either in the first quadrant (0 to 90 degrees) or third quadrant (–180 

to –90 degrees) in the RLP-XY planar projection. The out-of-plane component of the stable eigen-

vector is within ±10 degrees of the ecliptic plane. Maneuvering along or near the stable eigenvector 

in the first quadrant of the RLP-XY plane is denoted as an anti-sunward maneuver while maneu-

vering along or near the stable eigenvector in the third quadrant is donated as a sunward maneuver 

(although the observatory cannot maneuver directly toward the Sun). 

TECHNIQUE TO FIND THE STABLE EIGENVECTOR IN THE FULL EPHEMREIS 

MODEL 

During the investigation into the minimization of WIND maneuver sizes, it was noted that the 

station-keeping delta-v size as a function of the angle of the direction of the maneuver in the RLP-

XY plane creates a straight line when plotted in a polar representation.4 An example of this behavior 

from the WIND study appears in Figure 6. The angle in the polar plot in Figure 6 represents the 

direction of the delta-v applied in the RLP-XY plane relative to the RLP +x-axis. The delta-v mag-

nitude is measured radially and is in units of m/s. The blue line was constructed by calculating the 

maneuver size that converges on a perpendicular fourth crossing of the RLP-XZ plane for a range 

of maneuver directions between 0 and 90 degrees off the RLP +x-axis in the RLP-XY plane in 10-

degree increments. The region between 0 and 90 degrees corresponds to the quadrant that contains 

the position components of the stable eigenvector. For a given planar scan, either in the RLP-XY 

plane or out of the RLP-XY plane, the low-energy delta-v solution for that plane is calculated by 

finding the line starting at the origin that is perpendicular to the line representing the delta-v size 

as a function of maneuver direction angle. For this WIND example, maneuvering in the direction 

of the low-energy delta-v solution saved approximately 9 cm/s of delta-v, which is a 20% improve-

ment relative to the legacy strategy of directing the delta-v along the spacecraft-to-Sun vector in 

the RLP-XY plane.  

 

Figure 6. Example of the minimization technique that was developed for WIND.4 Maneuver mag-

nitude is measured radially in units of m/s while the maneuver direction in the RLP-XY plane is the 

angle in the polar plot and is in units of degrees. 
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Because the definition of a line only requires two points, a shortcut can be employed to calculate 

the line representing the delta-v sizes as a function of maneuver direction by calculating two data 

points comprised of both maneuver magnitude and angle. Two maneuver directions are selected 

with the only requirement that both directions must point in the same quadrant of the RLP plane to 

ensure the maneuver sign is the same for both data points. For a scan in the RLP-XY plane, direc-

tions in either quadrant 1 for anti-sunward maneuver or quadrant 3 for sunward maneuvers are 

acceptable. For the scan out of the RLP-XY plane, quadrant 1 is acceptable for both sunward and 

anti-sunward maneuvers. With the directions selected, a differential correction process is applied 

to calculate the maneuver size necessary to achieve a perpendicular crossing with zero x-velocity 

at the fourth crossing of the RLP-XZ axis in the full ephemeris model.   

The two data points necessary to construct the line of delta-v costs, represented by the red and 

green dots in Figure 7, are first represented in polar space as a function of maneuver direction angle, 

θi, and maneuver magnitude, ri. The polar coordinates can be transformed into cartesian space 

through a simple transformation. 

𝑥𝑖 = 𝑟𝑖 cos(𝜃𝑖)   𝑦𝑖 = 𝑟𝑖 sin(𝜃𝑖) (9) 

With the two data points defined in Cartesian space, the slope, mDV, and y-intercept, bDV, of the line 

created by the two points, represented by the blue line in Figure 7, can be calculated. 

𝑚𝐷𝑉 =
(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
     𝑏𝐷𝑉 = 𝑦1 − 𝑚𝐷𝑉𝑥1 (10) 

With the slope, mDV, and intercept, bDV, of the line known, the slope of the line starting at the origin 

and perpendicular to the delta-v cost line represented in Figure 7 by the orange line, mT, is the 

inverse reciprocal of mDV. The y-intercept of the perpendicular line, bT, will be zero as the orange 

line is required to pass through the origin. The minimum delta-v solution will be the intersection of 

the two lines. 

𝑥𝑚𝑖𝑛 =
−𝑏𝐷𝑉

(𝑚𝐷𝑉 +
1

𝑚𝐷𝑉
)
   𝑦𝑚𝑖𝑛 = 𝑚𝐷𝑉𝑥𝑚𝑖𝑛 + 𝑏𝐷𝑉 

(11) 

The Cartesian solution, xmin and ymin, can be converted back into a polar coordinates, which provides 

the minimum maneuver magnitude, rmin, and associated maneuver direction, θmin. 

𝜃𝑚𝑖𝑛 = tan−1 (
𝑦𝑚𝑖𝑛

𝑥𝑚𝑖𝑛
)    𝑟 = 𝑥𝑚𝑖𝑛 cos(𝜃𝑚𝑖𝑛) (12) 

WIND is only able to adjust the maneuver direction in the RLP-XY plane as its spin axis is 

oriented along the south ecliptic pole.4 JWST, on the other hand, can adjust the delta-v vector both 

within and out of the RLP-XY plane. As part of this investigation, it was observed that the linear 

relationship between maneuver angle and maneuver magnitude in the RLP-XY plane also exists 

when adjusting the maneuver direction out of the RLP-XY plane, as long as the angle in the RLP-

XY plane remains constant. The plot on the left in Figure 7 illustrates an example of the station-

keeping maneuver magnitudes for a given angle from the x-axis in the RLP-XY plane. The plot on 

the right in Figure 7 shows an example of extending the scanning direction out of the RLP-XY 

plane while keeping the RLP-XY in-plane angle constant at the angle of the minimum solution 

found in the RLP-XY in-plane scan. The black star in the right plot on Figure 7 represents the 

minimum delta-v solution. 
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Figure 7. Linear solving technique for JWST. The left polar plot shows results in the RLP-XY 

plane while the right polar plot shows the results out of the RLP-XY plane. The maneuver direction 

in the given plane, in degrees, is measured by the angle in the polar plot. Delta-v magnitude, meas-

ured radially, is in units of cm/s. 

The linear relationship leads to a simple algorithm to quickly determine the lowest delta-v solu-

tion at any point in a libration point orbit using only four differential correction processes, two in-

plane and two out-of-plane. The process works in either a CR3B regime or one based on planetary 

ephemerides. The results of a brute-force scan across a range of in-plane and out-of-plane angles 

appear in Figure 8. Overlaid in Figure 8 is the result from the simple algorithm, confirming that it 

results in the lowest delta-v.  

The station-keeping algorithm was tested numerically at multiple orbit locations to ensure ro-

bustness. Figure 9 replicates the direction of the position components of the stable eigenvector in 

the CR3B regime (from Figure 5) in green, with the addition of the black stars that represent the 

low delta-v solution direction calculated using the algorithm at a variety of orbit locations in the 

full ephemeris model. As expected, there is excellent agreement between the location of the posi-

tion components of the stable eigenvector in the CR3B model and the direction of the low delta-v 

solution calculated in the full ephemeris model. Because they are essentially coincident, going for-

ward, the “lowest delta-v solution” and the “stable eigenvector direction” will be used interchange-

ably. 
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Figure 8. Brute force scan to demonstrate success finding the minimum delta-v solution, as noted 

by the black star, using only four differential correction process. 

 

Figure 9. Confirmation that the minimum delta-v solution aligns with the stable eigenvector. The 

green lines are the stable eigenvectors calculated in the CR3B model while the black stars are mini-

mum delta-v solutions found at various orbit locations.  
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ADJUSTMENT OF THE MANEUVER DIRECTION DUE TO SUN ANGLE 

LIMITATIONS 

The attitude of the observatory is described via a series of three Sun angles: Sun pitch, Sun roll, 

and Sun yaw. A visual definition for each Sun angle appears in Figure 10. Due to the shape and 

orientation of the sunshield, Sun pitch is limited between –53 and 0 degrees, and Sun roll is limited 

between ±5 degrees to protect the sensitive telescope elements (ISIM and OTE). The observatory 

is free to yaw free between ±180 degrees, providing a view of the full sky over the course of a year. 

An additional constraint enforces a zero-degree Sun roll during all maneuvers. The allowable range 

of Sun angles limits the available pointing directions for the primary station-keeping thruster. 

Available station-keeping thrust vector orientation across the range of allowable Sun pitch and Sun 

yaw angle in the RLP frame for a unique observatory location are represented by a surface created 

by the points appearing in Figure 11*. The station-keeping thrust vector is unable to point in a 

sunward direction as the sensitive telescope elements (ISIM and OTE) would be lit by the Sun. 

There are also limitations in directing the station-keeping thrust vector directly along the Observa-

tory-to-Sun line, as seen in the YZ projection, as the ISIM or OTE would be likewise lit.  

Figure 12 shows the impact to the station-keeping thrust vector orientation in the RLP frame as 

a function of Sun angles to help understand how the individual Sun angles change the maneuver 

directions. The left plot color coordinates the data in terms of Sun pitch. A Sun pitch of –53 degrees 

(blue values) results in alignment of the station-keeping thrust vector roughly with the RLP-YZ 

plane while a Sun pitch of 0 degrees (red values) results in alignment as close as possible to the 

Sun-to-Observatory line. The right plot color coordinates the data in terms of Sun yaw. The Sun 

yaw creates a rotation of the station-keeping thrust vector about the Observatory-to-Sun line. 

 

 

Figure 10. Sun angle definitions for JWST.† 

                                                      

* Different locations along the orbit will result in slightly different RLP frame orientations of the station-keeping thrust 

vector as the vector is oriented in RLP space using the three Sun angles which are defined with respect to the observatory-

to-Sun vector and not the RLP-X vector. 
† Image credit: https://jwst-docs.stsci.edu/display/JTI/JWST+Observatory+Coordinate+System+and+Field+of+Regard. 

[Accessed 27 June 2019] 
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Figure 11. Possible orientations of the primary station-keeping thrust vector in the RLP frame. 

 

Figure 12. Possible orientations of the primary station-keeping thrust vector in the RLP frame 

and color coordinated by an individual Sun angle. The left plot is color coordinated by Sun pitch 

while the right plot is color coordinated by Sun yaw. 

Given the limited available pointing directions for the station-keeping thrust vector, alignment 

of the thrust vector and the stable eigenvector is not always possible. Station-keeping thrust vector 

directions in terms of an in-plane angle and out-of-plane angle appear in Figure 13. The same color-

coordination scheme is used to visualize the impact of the Sun angles on the pointing direction.  

The dark green circles represent the range of stable eigenvector directions throughout the entire 

period of the representative halo orbit selected for this analysis. Two distinct regions exist for the 

location of the stable eigenvector: sunward and anti-sunward. For anti-sunward maneuvers, it is 

possible to align the station-keeping thrust vectors with the stable eigenvector as the circle repre-

senting the anti-sunward stable eigenvector intersects the surface created by the available thrust 

vectors, however, alignment is not always guaranteed as part of the circle does not intersect the 

surface. For sunward maneuvers, it is impossible to align the station-keeping thrust vector and the 

stable eigenvector as the closest the station-keeping thrust vector can point toward the sunward 

stable eigenvector is roughly the RLP-YZ plane which is achieved at a Sun pitch of -53 degrees. 
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Figure 13. Alternative definition describing the orientation of the primary station-keeping thrust 

vector in terms of RLP-XY in-plane angle and RLP-XY out-of-plane angle. 

The limitations imposed by the allowable range of Sun angles necessitates an additional step in 

the maneuver planning process to generate a suitable maneuver plan. After the direction of the 

position components of the stable eigenvector has been determined, the Sun angles necessary to 

align the station-keeping thrust vector with the stable eigenvector direction are calculated. If the 

calculated Sun angles satisfy requirements, then the low-energy delta-v solution along the position 

components of stable eigenvector will be used to construct the maneuver plan. If the calculated Sun 

angles do not fall within requirements, which will be the majority of station-keeping maneuvers, 

an additional step is necessary to determine the allowable Sun pitch and Sun yaw combination that 

minimizes the maneuver delta-v: the station-keeping thrust vector is oriented as close as possible 

to the stable eigenvector.  

For anti-sunward maneuvers and when the station-keeping thrust vector cannot be aligned with 

the stable eigenvector, the Sun pitch that orients the thrust vector as close as possible to the stable 

eigenvector will always be 0 degrees. For a sunward maneuver, because it is impossible to align 

the station-keeping thrust vector and stable eigenvector, the Sun pitch will always be –53 degrees. 

This simplifies the search process as Sun yaw becomes the only free variable. The Sun yaw, at a 

fixed Sun pitch of 0 degrees for an anti-sunward maneuver or –53 degrees for a “sunward” maneu-

ver, that minimizes the vertex angle between the stable eigenvector and the resulting station-keep-

ing thrust vector orientation will result in the minimum delta-v size that falls within mission re-

quirements. 

 The Sun yaw that produces the minimum vertex angle between the stable eigenvector and sta-

tion-keeping thrust vector appears in Figure 14; this yaw results in the minimum delta-v solution 

within attitude constraints and will be a unique value for various locations throughout the orbit. 

The top half of Figure 14 illustrates an example of a result from a specific location along the tra-

jectory for an anti-sunward maneuver while the bottom half provides an example for a sunward 

maneuver.  
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For the anti-sunward half of Figure 14 (top row of plots), the results are straightforward. A 

sinusoidal relationship is apparent between the vertex angle and Sun yaw. This relationship pro-

duces a minimum delta-v cost around a Sun yaw of 70 degrees for this specific orbit location, which 

corresponds to the minimum vertex angle as well.  

The results for the sunward half (bottom row of plots) of Figure 14 are more complicated. Be-

cause of the large range of potential in-plane and out-of-plane orientations for the station-keeping 

thrust vector, as seen in Figures 11 and 12, the sinusoidal relationship crosses the boundary set by 

the unstable eigenvector, resulting in both positive and negative delta-v values for the range of Sun 

yaws studied. A negative delta-v value corresponds to an observatory attitude that places the sta-

tion-keeping thrust vector in the anti-sunward direction, at which point a negative impulsive delta-

v is necessary to achieve the desired sunward maneuver (and violating the attitude constraints). The 

values of Sun yaw that produce a negative impulsive delta-v are not a valid attitude for the station-

keeping maneuver. For the Sun yaw values that do produce a positive delta-v, the same relationship 

regarding the Sun yaw, vertex angle, and minimum delta-v solutions exists. For this specific loca-

tion along the trajectory, the Sun yaw that produces the minimum delta-v is –110 degrees. 

 

 

Figure 14. Demonstration that when the station-keeping thrust vector cannot align with the stable 

eigenvector, the Sun yaw value (at a fixed Sun pitch value of 0 degrees for anti-sunward maneuver 

and –53 degrees for sunward maneuver) that minimizes the angle between the station-keeping thrust 
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vector and stable eigenvector will result in the lowest delta-v solution within allowable attitude con-

straints. 

To further illustrate the importance of selecting the correct Sun yaw to help minimize the delta-

v costs for JWST, Figure 15 illustrates the percent increase in the maneuver size relative to the low-

energy delta-v solution along the position components of the stable eigenvector as a function of 

Sun yaw. For this anti-sunward maneuver example, the percent increase for the minimum solution 

within attitude constraints relative to the minimum solution along the stable eigenvector is only a 

few percent, if the right Sun yaw angle is selected; however, selecting the wrong Sun yaw value 

results in a maneuver plan up to double the size of the best-case yaw value and needlessly wastes 

fuel. The potential for wasting fuel is even more apparent in the sunward example. Because sun-

ward maneuvers are limited to the RLP-YZ plane, the angle between the stable eigenvector and the 

thrust vector orientation is quite large no matter the value of Sun yaw. The vertex angle range for 

anti-sunward maneuvers, apparent in Figure 14, is between 15 and 60 degrees. The range in vertex 

angle for sunward maneuvers is much larger, between 65 and 115 degrees. The minimum vertex 

angle in the sunward case is 65 degrees, which results in significant efficiency loss when maneu-

vering in the sunward direction. The efficiency loss is illustrated numerically in Figure 15 as the 

best Sun yaw solution within attitude constraints still results in a 200% increase in maneuver size 

relative to maneuvering along the position components of the stable eigenvector in the sunward 

direction. Because of the attitude constraints for JWST, this efficiency loss is unavoidable for a 

sunward maneuver; however, the efficiency loss can be mitigated as best as possible through se-

lection of the correct Sun yaw value during the maneuver planning process. 

 

Figure 15. Maneuver size relative to the minimum solution along the stable eigenvector as a func-

tion of maneuver Sun yaw. The Sun pitch is fixed at 0 degrees for anti-sunward maneuvers or -53 de-

grees for sunward maneuver.  

CONCLUSION 

The delta-v minimization technique first implemented by WIND to find the direction of the 

stable eigenvector in the RLP-XY plane is extended to include a component out of the RLP-XY 

plane to find the direction of the stable eigenvector in all three RLP dimensions. To find the direc-

tion of the stable eigenvector for an arbitrary location in a libration point orbit, four differential 

correction processes, two in-plane and two out-of-plane, are necessary. With the direction of the 

stable eigenvector known, the Sun angles necessary to align the station-keeping thrust vector and 
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the stable eigenvector are calculated. If the resulting Sun angles fall within requirements, the ma-

neuver direction will be along the stable eigenvector and result in a low delta-v solution maneuver 

plan. In the event that the resulting Sun angles do not fall within requirements, a Sun yaw value is 

calculated that minimizes the distance between the stable eigenvector and resulting station-keeping 

thrust vector orientation with the Sun pitch fixed at 0 for anti-sunward maneuvers and –53 degrees 

for sunward maneuvers. Selection of a proper Sun yaw for a maneuver plan is critical to ensure that 

the station-keeping maneuvers remain as efficient as possible when oriented away from the position 

components of the stable eigenvector. 
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